A Posteriori Error Estimates for the Fractional–step Θ-scheme for Linear Parabolic Equations

نویسنده

  • FOTINI KARAKATSANI
چکیده

We derive residual-based a posteriori error estimates of optimal order for time discretizations by the fractional-step θ-scheme for linear parabolic equations. First, we consider the time semi-discrete problem. The main tool of our analysis is an appropriate reconstruction of the piecewise linear interpolant of the approximate solution that leads to a residual of optimal order. Next, we extend the above mentioned results to the case of full discretization. The theoretical results are justified with numerical experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Posteriori Error Estimates for Nonlinear Problems. Finite Element Discretizations of Parabolic Equations

We give a general framework for deriving a posteriori error estimates for approximate solutions of nonlinear parabolic problems. In a first step it is proven that the error of the approximate solution can be bounded from above and from below by an appropriate norm of its residual. In a second step this norm of the residual is bounded from above and from below by a similar norm of a suitable fin...

متن کامل

A Posteriori Error Estimates for the Bdf2 Method for Parabolic Equations

Abstract. We derive optimal order, residual-based a posteriori error estimates for time discretizations by the two–step BDF method for linear parabolic equations. Appropriate reconstructions of the approximate solution play a key role in the analysis. To utilize the BDF method we employ one step by both the trapezoidal method or the backward Euler scheme. Our a posteriori error estimates are of...

متن کامل

A posteriori error estimates for linear parabolic equations

We consider discretizations of linear parabolic equations by A-stable θ-schemes in time and conforming finite elements in space. For these discretizations we derive a residual a posteriori error estimator. The estimator yields upper bounds on the error which are global in space and time and lower bounds that are global in space and local in time. The error estimates are fully robust in the sens...

متن کامل

A Posteriori Error Estimates for Nonlinear Problems. L(0, T ;L(Ω))-Error Estimates for Finite Element Discretizations of Parabolic Equations

Using the abstract framework of [10] we analyze a residual a posteriori error estimator for space-time finite element discretizations of parabolic pdes. The estimator gives global upper and local lower bounds on the error of the numerical solution. The finite element discretizations in particular cover the so-called θ-scheme, which includes the implicit and explicit Euler methods and the Crank-...

متن کامل

;l(ω))-error Estimates for Finite Element Discretizations of Parabolic Equations

Using the abstract framework of [9] we analyze a residual a posteriori error estimator for space-time finite element discretizations of quasilinear parabolic pdes. The estimator gives global upper and local lower bounds on the error of the numerical solution. The finite element discretizations in particular cover the so-called θ-scheme, which includes the implicit and explicit Euler methods and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015